

RF Duplexer

Alizée André, Benoît Vignon

Ecublens, Vaud

14/03/2025

History and actual status

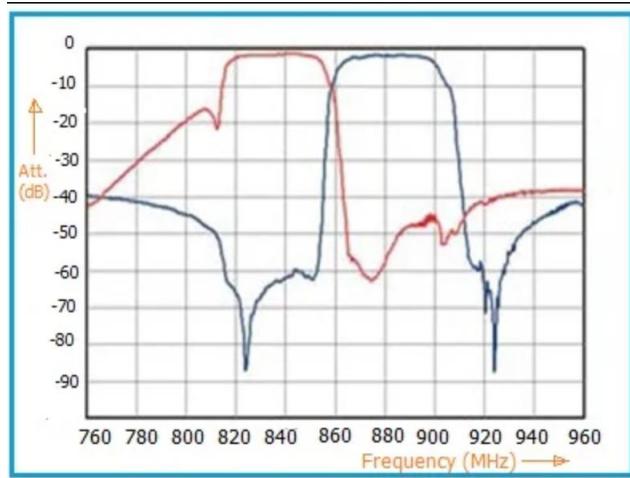
Duplexer: enables the simultaneous transmission & reception of RF waves by isolating the two signals in time and frequency domains, using only one antenna.

70's: film bulk acoustic resonator (FBAR): free-standing membrane prevents acoustic wave from escaping to substrate, limited by piezo-electric thin-films technologies

80's: surface acoustic wave (SAW), up to 1GHz

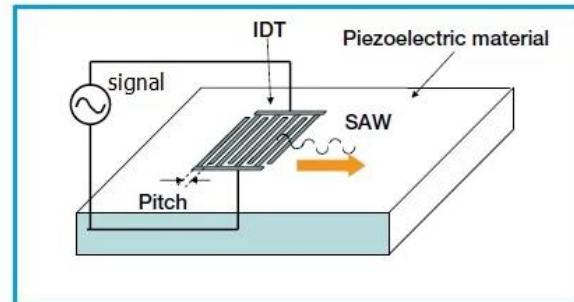
90's: breakthrough thanks to thin film technology, bulk acoustic wave (BAW) solidly mounted resonator (SMR)

1997: Qorvo's first product


2001: integration in smartphones and infrastructure

- increasing demand for efficient RF components
- high-speed wireless communication and deployment of 5G networks
- Temperature drift compensation

MEMS operation principle


Duplexers:

- Acoustic wavelength much shorter than EM wavelength (μm vs cm)
- Lower voltage than typical MEMS,
- Integrated with CMOS

SAW

$$f_0 = \frac{V_{SAW}}{\lambda}$$

BAW

$$f \propto \sqrt{\frac{E n}{\rho t}}$$

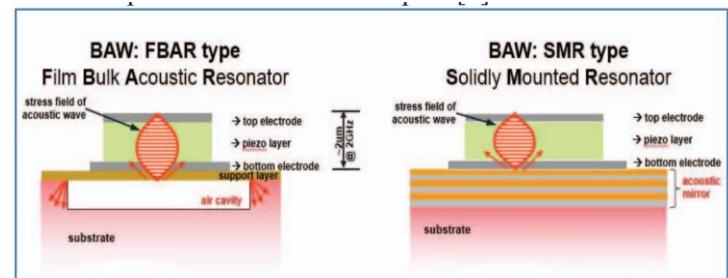


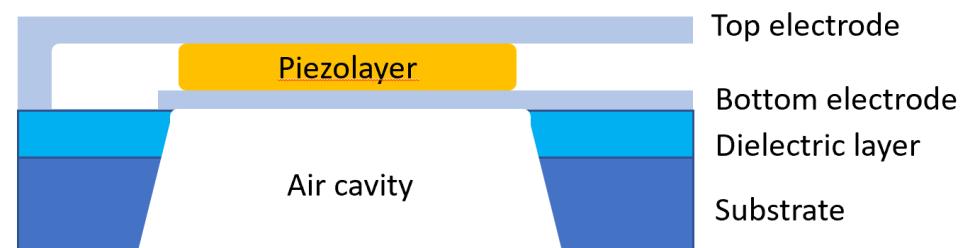
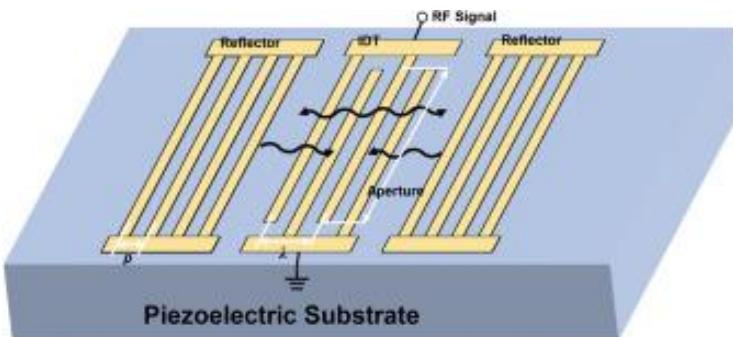
Fig.1. FBAR vs SMR basic fabrication difference

Images courtesy of: <https://www.rfwireless-world.com/Terminology/SAW-Duplexer-basics-and-working-principle.html>

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7329587>

Piezo scaling class by Dr. Shea in the Scaling Laws course

MEMS implementation



Typical micromachining used for fabrication

Rayleigh waves highly dependent on substrate material surface

Aluminium nitride gaining traction for its properties vs ease of fabrication

Photoresist patterning & etching, thin film metal deposition, release for BAW membrane

Packaging to reduce losses & provide mechanical protection

Images courtesy of: K. Yang, C. He, J. Fang, X. Cui, H. Sun, Y. Yang, C. Zuo, Advanced RF filters for wireless communications. Chip 2, 100058 (2023)

https://en.wikipedia.org/wiki/Thin-film_bulk-acoustic_resonator

Characteristics

- Balanced type or Unbalanced type
- Pass Band frequency ranges
- Bandwidth Insertion Loss (dB)
- Absolute rejection (dB)
- Isolation between Tx to Rx (dB)
- Size
- Out-of-band attenuation
- Temperature stability

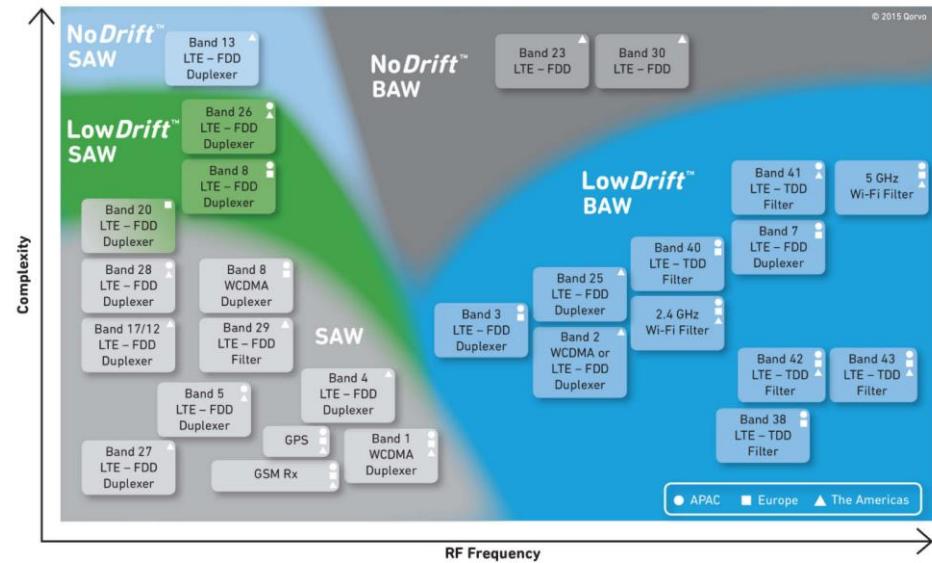
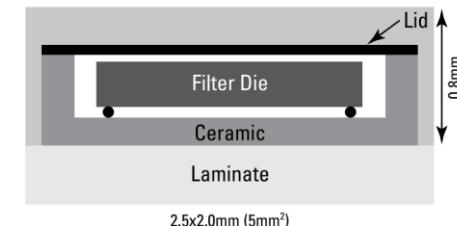


Table 1. Band and feature developments over time.

Features	LTE Advanced		5G	
	2015	2017	2019	2020
Number of total RF paths	14	22	>100	>300
Number of filter-band paths	7	12	18	>25
Maximum number of filters combined at one node for carrier aggregation	2	6	8	15
Critical isolation specifications required to meet standard	2	36	51	74
Max bandwidth of transmit signal	20 MHz	40 MHz	60 MHz	100 MHz
Power class 2 (3 dB higher power)	No	No	Yes	Yes
LNA integration	No	No	Yes	Yes
Envelope tracking or average power tracking (ET or APT)	APT	ET	ET	ET & APT
Incremental RF PCB size change	Baseline	+25%	+50%	-35%


qorvo.

© Qorvo, Inc.

Images courtesy of: https://www.rfmw.com/data/qorvo_rf_filter_apps.pdf

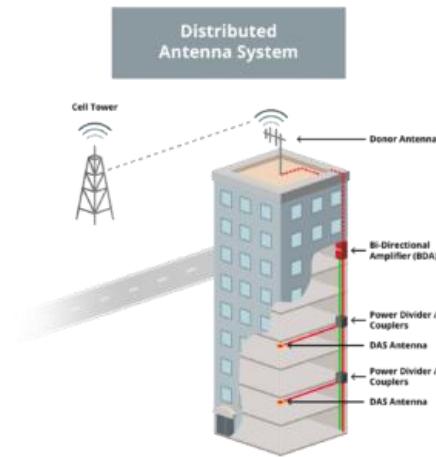
Packaging and systems integration

- Flip-chip with copper bumps to replace wire bonds
 - Plug and play placement
 - Better RF performance
 - Fast manufacturing and assembly
- Ceramic packaging replaced by Wafer-level packaging
 - Die protected in air cavity by polymer seal
 - High-frequency operation and mechanical protection
- Reduce the area by placing the pillars on the WLP roof (-30%)
 - 1.1x0.9x0.585mm

Typical Wafer Packaging

Wafer Level Packaging

Figure 8. Simplified cross-section of legacy WLP BAW versus uBAW.



Images courtesy of: https://www.rfmw.com/data/qorvo_rf_filter_apps.pdf, <https://www.qorvo.com/resources/d/qorvo-advanced-baw-filter-technology-impact-on-5g-white-paper>

Products and current applications

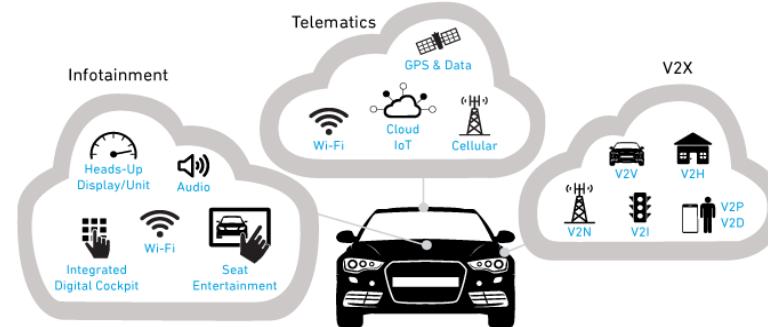
Femtocells and picocells

Boosters, repeaters and distributed antenna systems (DAS)

QPQ1270
Band 7 BAW Duplexer


9 Pad 2.00 mm x 2.50 mm x 1.015 mm SMP

Applications


- Base Stations Infrastructure
- Small Cells
- Repeaters
- LTE Dongles
- General Purpose Wireless

**SAW: 2G, 3G,
Bluetooth, GPS
BAW: 4G, 5G**

Heterogeneous Connectivity

qorvo

©2018 Qorvo, Inc.

routers

<https://www.5gradar.com/features/5g-microinfrastructure-microcells-femtocells-and-picocells-explained> <https://chance5g.ch/fr>
<https://www.qorvo.com/products/p/QPQ1270> <https://www.qorvo.com/design-hub/blog/connected-car-for-dummies-reveals-cutting-edge-innovations-shaping-the-future-of-driving>
<https://tektelic.com/what-it-is/iot/> <https://www.asus.com/us/networking-iot-servers/wifi-routers/asus-wifi-routers/rt-ax5400/> <https://www.steelintheair.com/das-and-small-cells/>

References

<https://www.digikey.ch/en/blog/how-do-mems-filters-work-lamda-wave-saw-baw>

https://en.wikipedia.org/wiki/Thin-film_bulk_acoustic_resonator

https://en.wikipedia.org/wiki/Surface_acoustic_wave

<https://www.rfwireless-world.com/Terminology/SAW-Duplexer-basics-and-working-principle.html>

<https://patents.google.com/patent/US7579926B2/en>

<https://patents.google.com/patent/US6262637B1/en>

<https://patents.google.com/patent/US5910756A/en>

<https://patents.justia.com/patent/6313715>

Piezo scaling class by Dr. Shea in the Scaling Laws course

<https://www.rfwireless-world.com/Terminology/SAW-Duplexer-basics-and-working-principle.html>

https://medias.yolegroup.com/uploads/2017/05/Yole_Taiyo_Yuden_SAW_BAW_Band_7_Duplexer_Skywork_SiP_Flyer_SP17327.pdf

K. Yang, C. He, J. Fang, X. Cui, H. Sun, Y. Yang, C. Zuo, Advanced RF filters for wireless communications. Chip 2, 100058 (2023)

<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7329587>